

Instructor: Frank Secretain
Course: Math 1004
Date: December 13, 2024

Assessment: Test 4 a
Time allowed: 110 minutes
Devices allowed: Pencil, pen, eraser, calculator
Notes from instructor: Be neat. Show your work where needed. Box final answers.

Marks allocated: 5 questions worth 20 marks
Percentage of final grade: 20% of final grade

Formula Sheet

Order of Operations

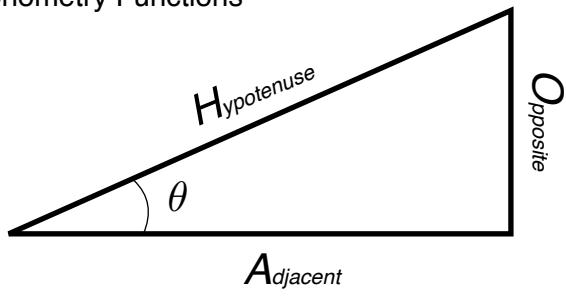
$$ac + bc = c(a + b)$$

exponents

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$


$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

radicals

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Trigonometry Functions

$$\sin(\theta) = \frac{O}{H} \quad \sin^{-1}\left(\frac{O}{H}\right) = \theta$$

$$\cos(\theta) = \frac{A}{H} \quad \cos^{-1}\left(\frac{A}{H}\right) = \theta$$

$$\tan(\theta) = \frac{O}{A} \quad \tan^{-1}\left(\frac{O}{A}\right) = \theta$$

Pythagoras Theorem

$$H^2 = O^2 + A^2$$

Relative Velocity

$$\vec{v}_{\frac{A}{C}} = \vec{v}_{\frac{A}{B}} + \vec{v}_{\frac{B}{C}}$$

$$\vec{v}_{\frac{B}{A}} = -\vec{v}_{\frac{A}{B}}$$

Linear equations (Cramer's rule)

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Forms of a 1st order polynomial

$$y = ax + b$$

Forms of a 2nd order polynomial

$$y = ax^2 + bx + c$$

$$y = a(x - h)^2 + k$$

$$y = (x - m)(x - n)$$

Quadratic Equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Unit Conversions

angles

$$2\pi = 6.28 \text{ rad} = 360^\circ :$$

mass

$$1 \text{ kg} = 2.2 \text{ lbs.}$$

lengths

$$1 \text{ mile} = 1.6 \text{ km}$$

$$1 \text{ inch} = 2.54 \text{ cm}$$

$$1 \text{ m} = 3.3 \text{ ft}$$

volumes

$$1 \text{ gallon} = 3.78 \text{ Litres}$$

(2 marks) Solve the each expression and keep the correct number of significant digits.

$$(380)(3.2) + 120$$

$$(2.43)(3991.76)+300$$

(2 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.

$$3.5 \frac{\text{radians}}{\text{s}} \rightarrow \frac{\text{degrees}}{\text{minute}}$$

$$873 \frac{\text{miles}^2}{\text{hour}} \rightarrow \frac{\text{feet}^2}{\text{second}}$$

(4 marks) You run 150 m West, 120 m at 30° North of East and 70 m at 60° West of North. How far are you from where you started?

(2 marks each) Solve for x in the following equations.

$$IR_o + Ix - 5 = V_o$$

$$\frac{bx + c}{2} - 3b = c$$

$$\frac{a(x-1)+2}{x-1}+b=3$$

$$\frac{x+1}{x}+3=\frac{\rho\sin(\theta)}{2}$$

(4 marks) Solve for x and y in the following equation.

$$\frac{3(x + y) - 1}{x + y} + 1 = 5$$

$$\frac{x + 1}{x + y} + 1 = 9$$

(2 marks) Solve the each expression and keep the correct number of significant digits.

$$\underline{(380)(3.2)} + 120$$

$$\underline{1216} + 120 = \underline{1336}$$

$$= 1300$$

$$\underline{(2.43)(3991.76)} + 300$$

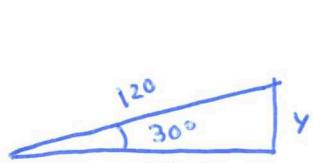
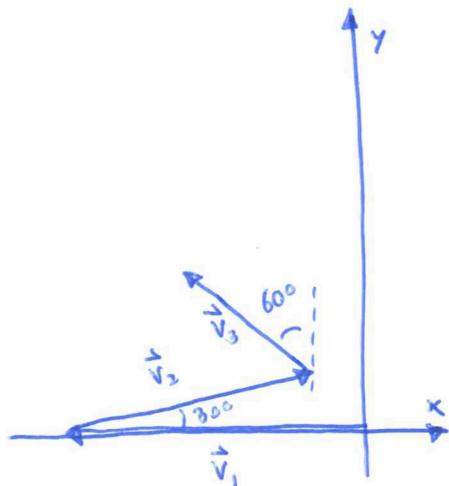
$$\underline{9699.9768} + \underline{300} = 9999.9768 \\ = 10000$$

$$= 1.00 \times 10^4$$

(2 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.

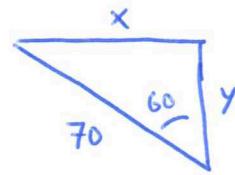
$$3.5 \frac{\text{radians}}{\text{s}} \rightarrow \frac{\text{degrees}}{\text{minute}}$$

$$3.5 \frac{\cancel{\text{radians}}}{\cancel{\text{sec}}} \left(\frac{360 \text{ degrees}}{2\pi \text{ radians}} \right) \left(\frac{60 \text{ sec}}{1 \text{ min}} \right) = 12032 \frac{\text{deg}}{\text{sec}}$$



$$= 12000 \frac{\text{deg}}{\text{sec}}$$

$$873 \frac{\text{miles}^2}{\text{hour}} \rightarrow \frac{\text{feet}^2}{\text{second}}$$

$$873 \frac{\cancel{\text{miles}^2}}{\cancel{\text{hour}}} \left(\frac{1.6^2 \text{ km}}{1^2 \text{ mile}^2} \right) \left(\frac{1000^2 \text{ ft}}{1^2 \text{ km}^2} \right) \left(\frac{3.3^2 \text{ ft}^2}{1^2 \text{ m}^2} \right) \left(\frac{1 \text{ hour}}{60 \text{ min}} \right) \left(\frac{1 \text{ min}}{60 \text{ sec}} \right)$$


$$6760512 \frac{\text{feet}^2}{\text{second}} = 6760000 \frac{\text{feet}^2}{\text{sec}}$$

(4 marks) You run 150 m West, 120 m at 30° North of East and 70 m at 60° West of North. How far are you from where you started?

$$x = 120 \cos(30) \\ = 103.92$$

$$y = 120 \sin(30) \\ = 60$$

$$x = 70 \sin(60) \\ = 60.62$$

$$y = 70 \cos(60) \\ = 35$$

$$\begin{aligned}\vec{v}_1 &= -150 \hat{x} + 0 \hat{y} \\ \vec{v}_2 &= 103.92 \hat{x} + 60 \hat{y} \\ \vec{v}_3 &= -60.62 \hat{x} + 35 \hat{y} \\ \hline \vec{v}_f &= -106.7 \hat{x} + 95 \hat{y}\end{aligned}$$

$$|\vec{v}_f| = \sqrt{(-106.7)^2 + (95)^2}$$

$$= 142.86$$

$$|\vec{v}_f| = 140 \text{ m}$$

(2 marks each) Solve for x in the following equations.

$$IR_o + Ix - 5 = V_o$$

$$Ix = V_o - IR_o + 5$$

$$x = \frac{V_o - IR_o + 5}{I}$$

$$\frac{bx + c}{2} - 3b = c$$

$$bx + c = 2(c + 3b)$$

$$x = \frac{2(c + 3b) - c}{b} = \frac{c + 6b}{b}$$

$$\frac{a(x-1) + 2}{x-1} + b = 3$$

$$a(x-1) + 2 + b(x-1) = 3(x-1)$$

$$ax - a + 2 + bx - b = 3x - 3$$

$$ax + bx - 3x = a + b - 5$$

$$x = \frac{a+b-5}{a+b-3}$$

$$\frac{x+1}{x} + 3 = \frac{\rho \sin(\theta)}{2}$$

$$2(x+1) + 6x = \rho x \sin(\theta)$$

$$2x + 2 + 6x = \rho x \sin(\theta)$$

$$8x - \rho x \sin(\theta) = -2$$

$$x = \frac{-2}{8 - \rho \sin \theta} = \frac{2}{\rho \sin \theta - 8}$$

(4 marks) Solve for x and y in the following equation.

$$\frac{3(x+y) - 1}{x+y} + 1 = 5 \quad (1)$$

$$\frac{x+1}{x+y} + 1 = 9 \quad (2)$$

Simplify (1) :

$$3x + 3y - 1 = 4x + 4y$$

$$x + y = -1 \quad (1a)$$

Sub (2b) into (1a)

$$x = -1 - [8]$$

$$\boxed{x = -9}$$

Simplify (2) :

$$x + 1 = 8x + 8y$$

$$7x + 8y = 1 \quad (2a)$$

Solve for x in (1a)

$$x = -1 - y \quad (1b)$$

Sub. (1b) into (2a)

$$7[-1 - y] + 8y = 1$$

$$-7 - 7y + 8y = 1$$

$$\boxed{y = 8} \quad (2b)$$

Instructor: Frank Secretain
Course: Math 1004
Date: December 13, 2024

Assessment: Test 4 b
Time allowed: 110 minutes
Devices allowed: Pencil, pen, eraser, calculator
Notes from instructor: Be neat. Show your work where needed. Box final answers.

Marks allocated: 5 questions worth 20 marks
Percentage of final grade: 20% of final grade

Formula Sheet

Order of Operations

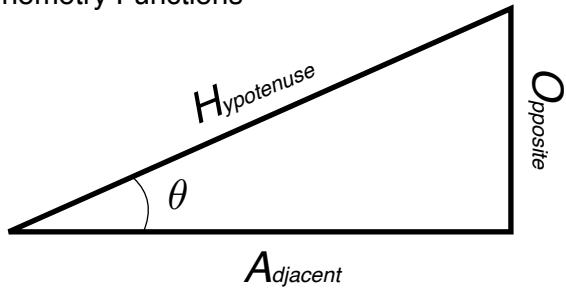
$$ac + bc = c(a + b)$$

exponents

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$


$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

radicals

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Trigonometry Functions

$$\sin(\theta) = \frac{O}{H} \quad \sin^{-1}\left(\frac{O}{H}\right) = \theta$$

$$\cos(\theta) = \frac{A}{H} \quad \cos^{-1}\left(\frac{A}{H}\right) = \theta$$

$$\tan(\theta) = \frac{O}{A} \quad \tan^{-1}\left(\frac{O}{A}\right) = \theta$$

Pythagoras Theorem

$$H^2 = O^2 + A^2$$

Relative Velocity

$$\vec{v}_{\frac{A}{C}} = \vec{v}_{\frac{A}{B}} + \vec{v}_{\frac{B}{C}}$$

$$\vec{v}_{\frac{B}{A}} = -\vec{v}_{\frac{A}{B}}$$

Linear equations (Cramer's rule)

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Forms of a 1st order polynomial

$$y = ax + b$$

Forms of a 2nd order polynomial

$$y = ax^2 + bx + c$$

$$y = a(x - h)^2 + k$$

$$y = (x - m)(x - n)$$

Quadratic Equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Unit Conversions

angles

$$2\pi = 6.28 \text{ rad} = 360^\circ :$$

mass

$$1 \text{ kg} = 2.2 \text{ lbs.}$$

lengths

$$1 \text{ mile} = 1.6 \text{ km}$$

$$1 \text{ inch} = 2.54 \text{ cm}$$

$$1 \text{ m} = 3.3 \text{ ft}$$

volumes

$$1 \text{ gallon} = 3.78 \text{ Litres}$$

(2 marks) Solve the each expression and keep the correct number of significant digits.

$$(480)(3.2) + 120$$

$$(2.43)(3991.76) + 10300$$

(2 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.

$$5.9 \frac{\text{radians}}{\text{seconds}} \rightarrow \frac{\text{degrees}}{\text{minute}}$$

$$0.54 \frac{\text{miles}^2}{\text{hour}} \rightarrow \frac{\text{feet}^2}{\text{second}}$$

(4 marks) You run 190 m West, 120 m at 50° North of East and 70 m at 30° West of North. How far are you from where you started?

(2 marks each) Solve for x in the following equations.

$$v^2x - 4 + \Gamma = V_o$$

$$\frac{ax - h}{3} - 5b = c$$

$$\frac{b(x-1)+3}{x-1}+b=5$$

$$\frac{x}{x-1}+5=\frac{b\sin(\phi)}{4}$$

(4 marks) Solve for x and y in the following equation.

$$\frac{7(x - y) - 1}{x - y} + 1 = 5$$

$$\frac{x + 1}{x + y} + 1 = 9$$

(2 marks) Solve the each expression and keep the correct number of significant digits.

$$(480)(3.2) + 120$$

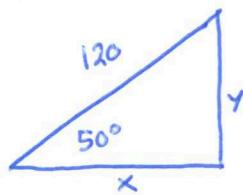
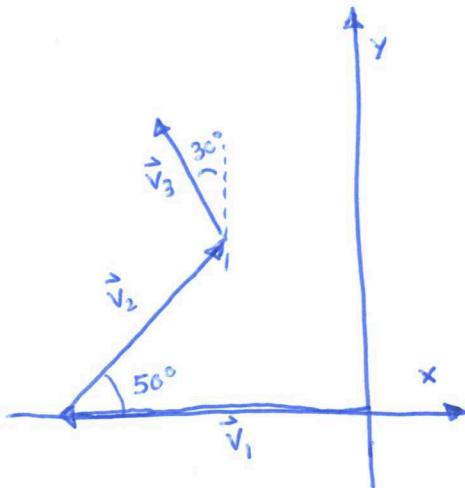
$$\begin{array}{r} \cancel{1536}^2 \\ \cancel{1536}^2 + 120 \\ \hline 1656 \end{array} = \boxed{1700}$$

$$(2.43)(3991.76) + 10300$$

$$\begin{array}{r} \cancel{9699.9768}^3 \\ \cancel{9699.9768}^3 + 10300 \\ \hline 19999.9768 \end{array} = \boxed{2.00 \times 10^4}$$

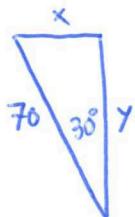
(2 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.

$$5.9 \frac{\text{radians}}{\text{seconds}} \rightarrow \frac{\text{degrees}}{\text{minute}}$$



$$5.9 \cancel{\frac{\text{rads}}{\text{s}}} \left(\frac{360 \text{ deg}}{2\pi \text{ rads}} \right) \left(\frac{60 \text{ s}}{1 \text{ min}} \right) = \boxed{20283 \frac{\text{deg}}{\text{min}}} \\ = \boxed{2.0 \times 10^4 \frac{\text{deg}}{\text{min}}}$$

$$0.54 \frac{\text{miles}^2}{\text{hour}} \rightarrow \frac{\text{feet}^2}{\text{second}}$$

$$0.54 \cancel{\frac{\text{miles}^2}{\text{hour}}} \left(\frac{1.6 \text{ km}}{1^2 \text{ mile}^2} \right) \left(\frac{1000^2 \text{ m}^2}{1^2 \text{ km}^2} \right) \left(\frac{3.3^2 \text{ ft}^2}{1^2 \text{ m}^2} \right) \left(\frac{1 \text{ hour}}{60 \text{ min}} \right) \left(\frac{1 \text{ min}}{60 \text{ sec}} \right)$$


$$4182 \frac{\text{ft}^2}{\text{sec}} = 4.2 \times 10^3 \frac{\text{ft}^2}{\text{sec}}$$

(4 marks) You run 190 m West, 120 m at 50° North of East and 70 m at 30° West of North. How far are you from where you started?

$$x = 120 \cos(50) = 77.13$$

$$y = 120 \sin(50) = 91.93$$

$$x = 70 \sin(30) = 35$$

$$y = 70 \cos(30) = 60.62$$

$$\begin{aligned}
 \vec{v}_1 &= -190 \hat{x} + 0 \hat{y} \\
 \vec{v}_2 &= 77.13 \hat{x} + 91.93 \hat{y} \\
 + \vec{v}_3 &= -35 \hat{x} + 60.62 \hat{y} \\
 \hline
 \vec{v}_f &= -147.87 \hat{x} + 152.55 \hat{y}
 \end{aligned}$$

$$|\vec{v}_f| = \sqrt{(-147.87)^2 + (152.55)^2}$$

$$= 212.45$$

$$|\vec{v}_f| = 210 \text{ m}$$

(2 marks each) Solve for x in the following equations.

$$v^2 x - 4 + \Gamma = V_o$$

$$\frac{v^2 x}{v^2} = \frac{V_o - \Gamma + 4}{v^2}$$

$$x = \frac{V_o - \Gamma + 4}{v^2}$$

$$\frac{ax - h}{3} - 5b = c$$

$$ax - h = 3(c + 5b)$$

$$x = \frac{3(c + 5b) + h}{a}$$

$$\frac{b(x-1) + 3}{x-1} + b = 5$$

$$b(x-1) + 3 + b(x-1) = 5(x-1)$$

$$bx - b + 3 + bx - b = 5x - 5$$

$$2bx - 2b + 3 = 5x - 5$$

$$2bx - 5x = 2b - 8$$

$$x = \frac{2b - 8}{2b - 5}$$

$$\frac{x}{x-1} + 5 = \frac{b \sin(\phi)}{4}$$

$$4x + 20(x-1) = b \sin(\phi)(x-1)$$

$$4x + 20x - 20 = bx \sin(\phi) - b \sin(\phi)$$

$$24x - bx \sin(\phi) = 20 - b \sin(\phi)$$

$$x = \frac{20 - b \sin(\phi)}{24 - b \sin(\phi)}$$

(4 marks) Solve for x and y in the following equation.

$$\frac{7(x-y)-1}{x-y} + 1 = 5 \quad (1)$$

$$\frac{x+1}{x+y} + 1 = 9 \quad (2)$$

Simplify (1)

$$7x - 7y - 1 = 4x - 4y$$

$$3x - 3y = 1 \quad (1a)$$

Simplify (2)

$$x + 1 = 8x + 8y$$

$$7x + 8y = 1 \quad (2a)$$

Solve for x in (1a):

$$x = \frac{1+3y}{3} \quad (1b)$$

sub (1b) into (2a)

$$7 \left[\frac{1+3y}{3} \right] + 8y = 1$$

$$7 + 21y + 24y = 3$$

$$45y = -4$$

$$y = -\frac{4}{45} = -0.\bar{0}\bar{8} \quad \boxed{2b}$$

Sub (2b) into (1b)

$$x = \frac{1 + 3 \left[-\frac{4}{45} \right]}{3}$$

$$x = \frac{11}{45} = 0.\bar{2}\bar{4}$$