

Instructor: Frank Secretain
Course: Math 1004a
Date: September 27, 2024

Assessment: Test 1
Time allowed: 110 minutes
Devices allowed: Pencil, pen, eraser, calculator
Notes from instructor: Be neat. Show your work where needed. Box final answers.

Marks allocated: 5 questions worth 20 marks
Percentage of final grade: 20% of final grade

Formula Sheet

Order of Operations

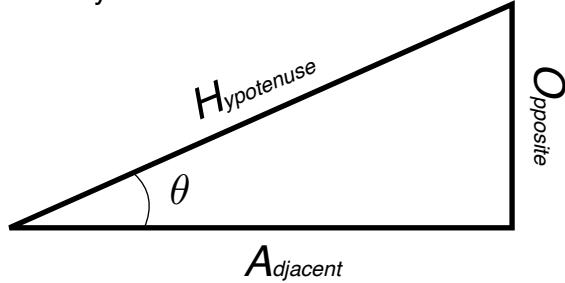
$$ac + bc = c(a + b)$$

exponents

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$


$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

radicals

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Trigonometry Functions

$$\sin(\theta) = \frac{O}{H} \quad \sin^{-1}\left(\frac{O}{H}\right) = \theta$$

$$\cos(\theta) = \frac{A}{H} \quad \cos^{-1}\left(\frac{A}{H}\right) = \theta$$

$$\tan(\theta) = \frac{O}{A} \quad \tan^{-1}\left(\frac{O}{A}\right) = \theta$$

Pythagoras Theorem

$$H^2 = O^2 + A^2$$

Relative Velocity

$$\vec{v}_{\frac{A}{C}} = \vec{v}_{\frac{A}{B}} + \vec{v}_{\frac{B}{C}}$$

Linear equations (Cramer's rule)

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Forms of a 2nd order polynomial

$$y = ax^2 + bx + c$$

$$y = a(x - h)^2 + k$$

$$y = (x - m)(x - n)$$

Unit Conversions

angles

$$2\pi = 6.28 \text{ rad} = 360^\circ$$

mass

$$1 \text{ kg} = 2.2 \text{ lbs.}$$

lengths

$$1 \text{ mile} = 1.6 \text{ km}$$

$$1 \text{ inch} = 2.54 \text{ cm}$$

$$1 \text{ m} = 3.3 \text{ ft}$$

volumes

$$1 \text{ gallon} = 3.78 \text{ Litres}$$

(4 marks) Match the “type of number” with the best “example number”. Draw a line to match the “type of number” to the “example number” to indicate your answer.

irrational

0

integer

$-\sqrt{1}$

rational

-2.1

whole

$\sqrt{3}$

(3 marks) Determine

- a) the total number of significant digits and
- b) the number of decimal places to the least significant digit
- c) re-write the number in scientific notation

for the following number:

0.020310

a) significant digits = _____

b) decimal places = _____

c) scientific notation = _____

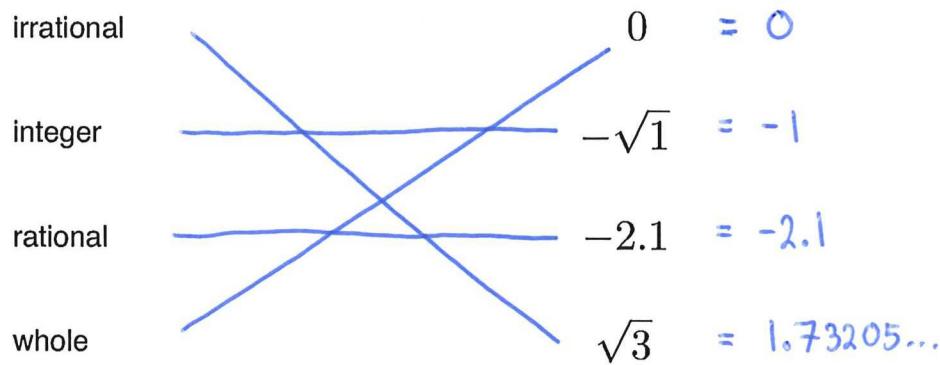
(3 marks) Solve the each expression and keep the correct number of significant digits.

160+12.183

(13.0)(0.02310)

$$212.4 + (290)(3.008492)$$

(5 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.


$$2.8 \text{ lbs.} \rightarrow \text{kg}$$

$$0.0452 \frac{\text{radians}}{\text{inch}} \rightarrow \frac{\text{degrees}}{\text{cm}}$$

$$0.00873 \frac{\text{gallon}^2}{\text{minute}} \rightarrow \frac{\text{Litres}^2}{\text{day}}$$

(5 marks) You run 730 m East, 250 m South and 120 m at 50° West of North. How far are you from where you started?

(4 marks) Match the “type of number” with the best “example number”. Draw a line to match the “type of number” to the “example number” to indicate your answer.

(3 marks) Determine

- the total number of significant digits and
- the number of decimal places to the least significant digit
- re-write the number in scientific notation

for the following number:

0.020310
 ⁵
⁺⁶

- significant digits = 5
- decimal places = +6
- scientific notation = 2.0310×10^{-2}

(3 marks) Solve the each expression and keep the correct number of significant digits.

$$160 + 12.183 = 172.183 = \boxed{170}$$

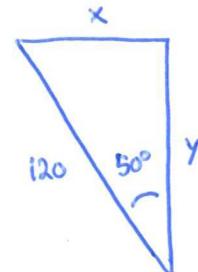
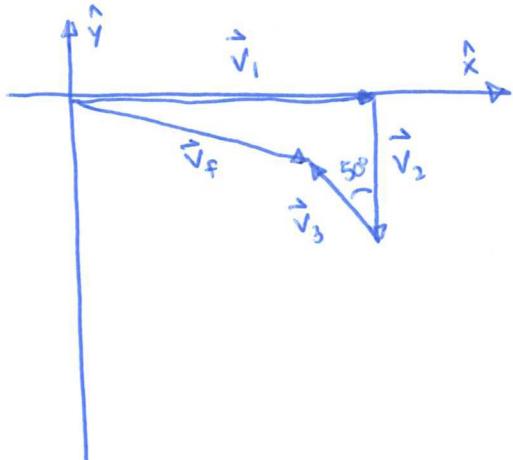
$$\frac{(13.0)(0.02310)}{3} = 0.3003 = \boxed{0.300}$$

$$\begin{aligned}
 212.4 + \frac{(290)(3.008492)}{2} &= 212.4 + \frac{872.46268}{2} \\
 &= 1084.86268 \\
 &= \boxed{1080}
 \end{aligned}$$

(5 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.

$$2.8 \text{ lbs.} \rightarrow \text{kg}$$

$$2.8 \text{ lbs.} \left(\frac{1 \text{ kg}}{2.2 \text{ lbs.}} \right) = 1.27 \text{ kg} = \boxed{1.3 \text{ kg}}$$



$$0.0452 \frac{\text{radians}}{\text{inch}} \rightarrow \frac{\text{degrees}}{\text{cm}}$$

$$\begin{aligned}
 0.0452 \frac{\text{rads}}{\text{inch}} \left(\frac{360^\circ}{2\pi \text{ rads}} \right) \left(\frac{1 \text{ inch}}{2.54 \text{ cm}} \right) &= 1.0196 \frac{\text{degrees}}{\text{cm}} \\
 &= \boxed{1.02 \frac{\text{degrees}}{\text{cm}}}
 \end{aligned}$$

$$0.00873 \frac{\text{gallon}^2}{\text{minute}} \rightarrow \frac{\text{Litres}^2}{\text{day}}$$

$$\begin{aligned}
 0.00873 \frac{\text{gallon}^2}{\text{minute}} \left(\frac{3.78 \text{ L}}{1 \text{ gal}} \right) \left(\frac{3.78 \text{ L}}{1 \text{ gal}} \right) \left(\frac{60 \text{ min}}{1 \text{ hour}} \right) \left(\frac{24 \text{ hours}}{1 \text{ day}} \right) \\
 &= 179.62 \frac{\text{L}^2}{\text{day}} = \boxed{1.80 \times 10^2 \frac{\text{L}^2}{\text{day}}}
 \end{aligned}$$

(5 marks) You run 730 m East, 250 South and 120 m at 50° West of North. How far are you from where you started?

$$x = 120 \sin(50) = 91.9253$$

$$y = 120 \cos(50) = 77.1345$$

$$\begin{aligned}\vec{v}_1 &= 730 \hat{x} + 0 \hat{y} \\ \vec{v}_2 &= 0 \hat{x} - 250 \hat{y} \\ \vec{v}_3 &= -91.9253 \hat{x} + 77.1345 \hat{y}\end{aligned}$$

$$\vec{v}_f = 638.0747 \hat{x} - 172.8655 \hat{y}$$

$$|\vec{v}_f| = \sqrt{(638.0747)^2 + (-172.8655)^2}$$

$$= 661.0762$$

$|\vec{v}_f| = 660 \text{ m}$

Instructor: Frank Secretain
Course: Math 1004b
Date: September 27, 2024

Assessment: Test 1
Time allowed: 110 minutes
Devices allowed: Pencil, pen, eraser, calculator
Notes from instructor: Be neat. Show your work where needed. Box final answers.

Marks allocated: 5 questions worth 20 marks
Percentage of final grade: 20% of final grade

Formula Sheet

Order of Operations

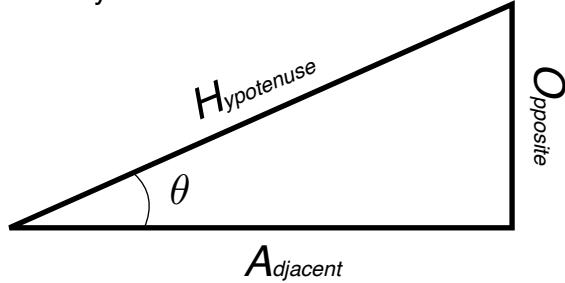
$$ac + bc = c(a + b)$$

exponents

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$


$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

radicals

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Trigonometry Functions

$$\sin(\theta) = \frac{O}{H} \quad \sin^{-1}\left(\frac{O}{H}\right) = \theta$$

$$\cos(\theta) = \frac{A}{H} \quad \cos^{-1}\left(\frac{A}{H}\right) = \theta$$

$$\tan(\theta) = \frac{O}{A} \quad \tan^{-1}\left(\frac{O}{A}\right) = \theta$$

Pythagoras Theorem

$$H^2 = O^2 + A^2$$

Relative Velocity

$$\vec{v}_{\frac{A}{C}} = \vec{v}_{\frac{A}{B}} + \vec{v}_{\frac{B}{C}}$$

Linear equations (Cramer's rule)

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Forms of a 2nd order polynomial

$$y = ax^2 + bx + c$$

$$y = a(x - h)^2 + k$$

$$y = (x - m)(x - n)$$

Unit Conversions

angles

$$2\pi = 6.28 \text{ rad} = 360^\circ$$

mass

$$1 \text{ kg} = 2.2 \text{ lbs.}$$

lengths

$$1 \text{ mile} = 1.6 \text{ km}$$

$$1 \text{ inch} = 2.54 \text{ cm}$$

$$1 \text{ m} = 3.3 \text{ ft}$$

volumes

$$1 \text{ gallon} = 3.78 \text{ Litres}$$

(4 marks) Match the “type of number” with the best “example number”. Draw a line to match the “type of number” to the “example number” to indicate your answer.

irrational

$$\sqrt{1}$$

integer

$$\sqrt{-1}$$

rational

$$\sqrt{5}$$

imaginary

$$-5.2$$

(3 marks) Determine

- the total number of significant digits and
- the number of decimal places to the least significant digit
- re-write the number in scientific notation

for the following number:

$$0.010130$$

a) significant digits = _____

b) decimal places = _____

c) scientific notation = _____

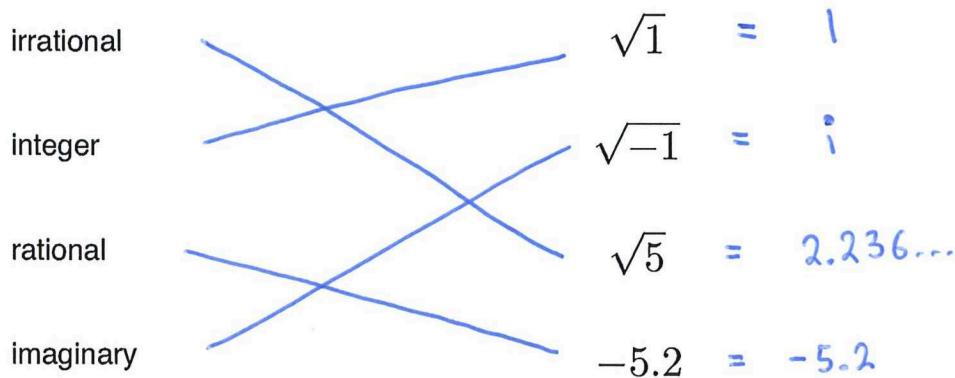
(3 marks) Solve the each expression and keep the correct number of significant digits.

$$130 + 16.129$$

$$(11.0)(0.03840)$$

$$223.4 + (270)(4.00862)$$

(5 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.


$$4.8 \text{ kg} \rightarrow \text{lbs.}$$

$$4.8 \frac{\text{inch}}{\text{degree}} \rightarrow \frac{\text{cm}}{\text{radians}}$$

$$5.82 \frac{\text{Litres}^2}{\text{day}} \rightarrow \frac{\text{gallon}^2}{\text{minute}}$$

(5 marks) You run 470 m East, 230 South and 180 m at 40° West of North. How far are you from where you started?

(4 marks) Match the “type of number” with the best “example number”. Draw a line to match the “type of number” to the “example number” to indicate your answer.

(3 marks) Determine

- a) the total number of significant digits and
- b) the number of decimal places to the least significant digit
- c) re-write the number in scientific notation

for the following number:

0.010130
 ⁵
 ⁶

a) significant digits = 5

b) decimal places = + 6

c) scientific notation = 1.0130×10^{-2}

(3 marks) Solve the each expression and keep the correct number of significant digits.

$$130 + 16.129 = 146.129 = \boxed{150}$$

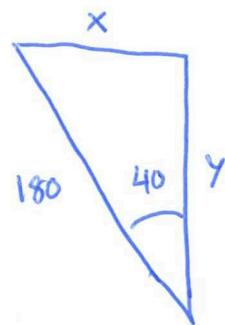
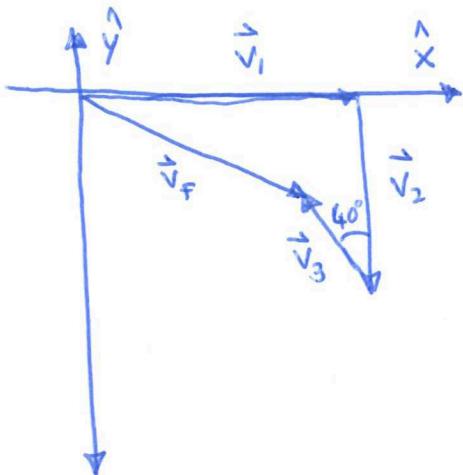
$$\frac{(11.0)(0.03840)}{34} = 0.4224 = \boxed{0.422}$$

$$\begin{aligned}
 223.4 + \frac{(270)(4.00862)}{6} &= 223.4 + \frac{1082.3274}{6} \\
 &= \frac{1305.7274}{6} \\
 &= \boxed{1300}
 \end{aligned}$$

(5 marks) Given the standard unit conversion table on the formula sheet (1st page), convert each of the numbers to the stated units.

$$4.8 \text{ kg} \rightarrow \text{lbs.}$$

$$4.8 \text{ kg} \left(\frac{2.2 \text{ lbs}}{1 \text{ kg}} \right) = 10.56 \text{ lbs.} = \boxed{11 \text{ lbs.}}$$



$$4.8 \frac{\text{inch}}{\text{degree}} \rightarrow \frac{\text{cm}}{\text{radians}}$$

$$4.8 \frac{\text{inch}}{\text{deg.}} \left(\frac{2.54 \text{ cm}}{1 \text{ inch}} \right) \left(\frac{360}{2\pi \text{ rad}} \right) = 698.55 \frac{\text{cm}}{\text{rad}} = \boxed{7.0 \times 10^2 \frac{\text{cm}}{\text{rad}}}$$

$$5.82 \frac{\text{Litres}^2}{\text{day}} \rightarrow \frac{\text{gallon}^2}{\text{minute}}$$

$$\begin{aligned}
 5.82 \cancel{\frac{\text{L}^2}{\text{day}}} \left(\frac{1 \text{ gal}}{3.78 \cancel{\text{L}}} \right) \left(\frac{1 \text{ gal}}{3.78 \cancel{\text{L}}} \right) \left(\frac{1 \text{ day}}{24 \text{ hour}} \right) \left(\frac{1 \text{ hour}}{60 \text{ min}} \right) &= 0.0002829 \frac{\text{gal}^2}{\text{min}} \\
 &= \boxed{0.000283 \frac{\text{gal}^2}{\text{min}}}
 \end{aligned}$$

(5 marks) You run 470 m East, 230 m South and 180 m at 40° West of North. How far are you from where you started?

$$x = 180 \sin(40) = 115.70$$

$$y = 180 \cos(40) = 137.89$$

$$\vec{v}_1 = 470 \hat{x} + 0 \hat{y}$$

$$\vec{v}_2 = 0 \hat{x} - 230 \hat{y}$$

$$\vec{v}_3 = -115.70 \hat{x} + 137.89 \hat{y}$$

$$\vec{v}_f = 354.3 \hat{x} - 92.11 \hat{y}$$

$$|\vec{v}_f| = \sqrt{(354.3)^2 + (-92.11)^2}$$

$$= 366.078$$

$$|\vec{v}_f| = 370 \text{ m}$$