

Instructor: Frank Secretain
Course: math 101
Assessment: Test 1
Time allowed: 110 minutes
Devices allowed: Pencil, pen, eraser, calculator
Notes from instructor: Be neat. Show your work where needed. Box final answers.

Marks allocated: 6 questions worth 25 marks
Percentage of final grade: 25% of final grade

Formula Sheet

Order of Operations

$$ac + bc = c(a + b)$$

exponents

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$

$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

radicals

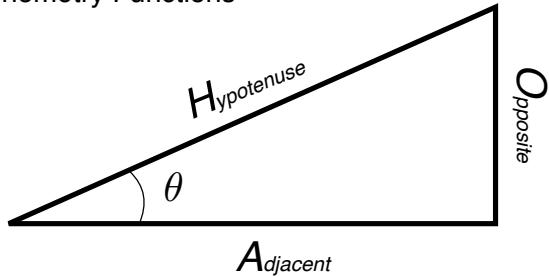
$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Relative Velocity

$$\vec{v}_{\frac{A}{C}} = \vec{v}_{\frac{A}{B}} + \vec{v}_{\frac{B}{C}}$$

Linear equations (Cramer's rule)

$$x_i = \frac{\det(A_i)}{\det(A)}$$


Forms of a 2nd order polynomial

$$y = ax^2 + bx + c$$

$$y = a(x - h)^2 + k$$

$$y = (x - m)(x - n)$$

Trigonometry Functions

$$\sin(\theta) = \frac{O}{H} \quad \sin^{-1}\left(\frac{O}{H}\right) = \theta$$

$$\cos(\theta) = \frac{A}{H} \quad \cos^{-1}\left(\frac{A}{H}\right) = \theta$$

$$\tan(\theta) = \frac{O}{A} \quad \tan^{-1}\left(\frac{O}{A}\right) = \theta$$

Pythagoras Theorem

$$H^2 = O^2 + A^2$$

Unit Conversions

angles

$$2\pi = 6.28 \text{ rad} = 360^\circ$$

mass

$$1 \text{ kg} = 2.2 \text{ lbs.}$$

lengths

$$1 \text{ mile} = 1.6 \text{ km}$$

$$1 \text{ inch} = 2.54 \text{ cm}$$

$$1 \text{ m} = 3.3 \text{ ft}$$

volumes

$$1 \text{ gallon} = 3.78 \text{ Litres}$$

(4 marks) Match the “type of number” with the best “example number”. Draw a line to match the “type of number” to the “example number” to indicate your answer.

natural

$$2^{\frac{1}{2}}$$

rational

$$2^2$$

imaginary

$$(-2)^{\frac{1}{2}}$$

irrational

$$-(2^2)$$

(3 marks) Solve the each expression and keep the correct number of significant digits.

$$130 + 18.365$$

$$58.23 + (0.010)(1002.3)$$

$$7239.1 + (1.2)(2300.75)$$

(2 marks) Convert each of the numbers to the stated units.

$$103^\circ \rightarrow radians$$

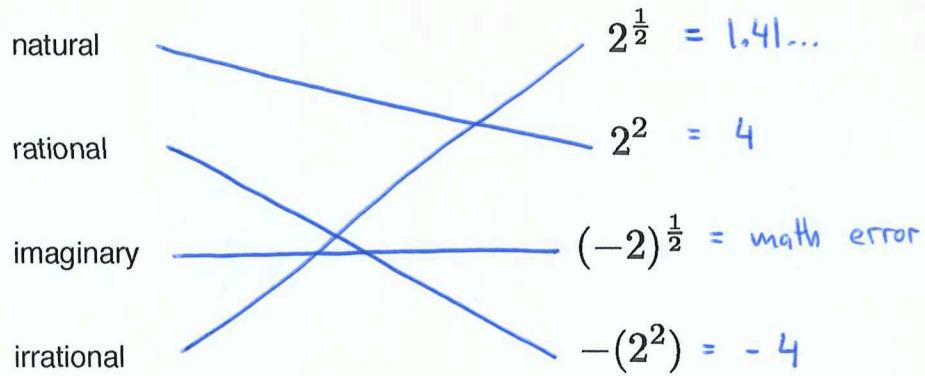
$$9.23 \frac{inchs^2}{L} \rightarrow \frac{mm^2}{gallon}$$

(1 marks) Re-write the equation in computer syntax with the minimum number of characters, Do not simplify or rearrange the equation.

$$\frac{ax - b}{cd + 1} - 1 = y$$

(5 marks) You run 30 m East, 20 m North, 40 m at 15° South of East and an “unknown distance and direction”. Your final position relative to your starting point is 10 m 20° East of North. How far did you run for the “unknown distance”?

(10 marks) Solve for x in the following equations


$$\frac{\Gamma^2(t-1)^a + 1}{y-1} - bx + c = \Pi$$

$$\frac{y-1}{x-1} + 1 = b$$

$$\frac{\Gamma(ax+b)-c}{a+b}+1=\cot(r\theta)$$

$$1+\frac{1}{4(x^2-1)}=\sin(\theta t+\phi)$$

(4 marks) Match the "type of number" with the best "example number". Draw a line to match the "type of number" to the "example number" to indicate your answer.

(3 marks) Solve the each expression and keep the correct number of significant digits.

$$130 + 18.365 = 148.365$$

$$= 150$$

$$58.23 + (0.010)(1002.3) = 58.23 + 10.023$$

$$= 68.253$$

$$= 68$$

$$7239.1 + (1.2)(2300.75) = 7239.1 + 2760.9$$

$$= 10000$$

$$= 1.00 \times 10^4$$

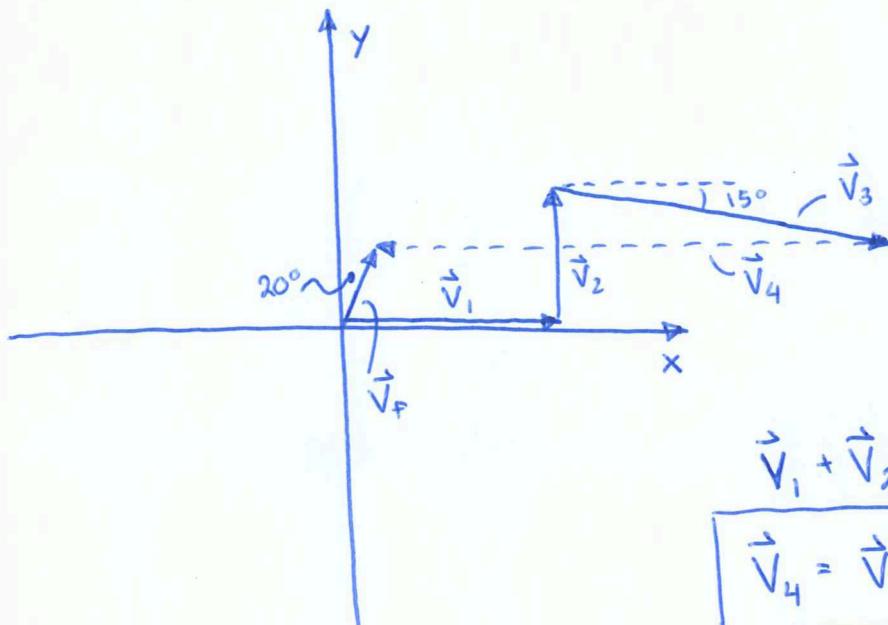
(2 marks) Convert each of the numbers to the stated units.

$$103^\circ \rightarrow \text{radians}$$

$$103^\circ \left(\frac{2\pi \text{ rad}}{360^\circ} \right) = \boxed{1.8 \text{ rads}}$$

$$9.23 \frac{\text{inches}^2}{L} \rightarrow \frac{\text{mm}^2}{\text{gallon}}$$

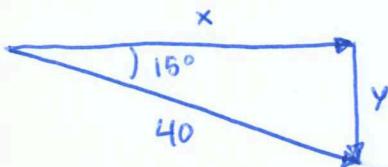
$$9.23 \frac{\cancel{\text{inches}}^2}{\cancel{L}} \left(\frac{3.78 \cancel{L}}{1 \text{ gallon}} \right) \left(\frac{2.54 \frac{\text{cm}^2}{\text{inch}^2}}{1^2 \cancel{\text{inch}^2}} \right) \left(\frac{10^2 \frac{\text{mm}^2}{\text{cm}^2}}{1^2 \cancel{\text{cm}^2}} \right) = \boxed{22500 \frac{\text{mm}^2}{\text{gallon}}}$$


$$9.23 * 3.78 * 2.54^2 * 10^2 = 22509.25$$

(1 marks) Re-write the equation in computer syntax with the minimum number of characters, Do not simplify or rearrange the equation.

$$\frac{ax - b}{cd + 1} - 1 = y$$

$$\boxed{(a*x - b) / (c*d + 1) - 1 = y}$$


(5 marks) You run 30 m East, 20 m North, 40 m at 15° South of East and an "unknown distance and direction". Your final position relative to your starting point is 10 m 20° East of North. How far did you run for the "unknown distance"?

$$\vec{V}_1 + \vec{V}_2 + \vec{V}_3 + \vec{V}_4 = \vec{V}_F$$

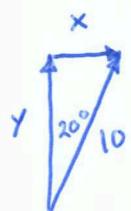
$$\vec{V}_4 = \vec{V}_F - \vec{V}_1 - \vec{V}_2 - \vec{V}_3$$

\vec{V}_3 :

$$x = 40 \cos(15^\circ) = 38.64$$

$$y = 40 \sin(15^\circ) = 10.35$$

$$\vec{V}_F = 3.42 \hat{x} + 9.397 \hat{y}$$


$$-\vec{V}_1 = -30 \hat{x} + 0 \hat{y}$$

$$-\vec{V}_2 = 0 \hat{x} - 20 \hat{y}$$

$$-\vec{V}_3 = -38.64 \hat{x} + 10.35 \hat{y}$$

$$\vec{V}_4 = -65.22 \hat{x} - 0.253 \hat{y}$$

\vec{V}_F :

$$x = 10 \sin(20^\circ) = 3.42$$

$$y = 10 \cos(20^\circ) = 9.397$$

$$|\vec{V}_4| = \sqrt{(-65.22)^2 + (-0.253)^2}$$

$$|\vec{V}_4| = 65.2 \text{ m}$$

(10 marks) Solve for x in the following equations

$$\frac{\Gamma^2(t-1)^a + 1}{y-1} - bx + c = \Pi$$

$$\frac{\Gamma^2(t-1)^a + 1}{y-1} + c - \Pi = bx$$

$$bx = \frac{\Gamma^2(t-1)^a + 1}{y-1} + c - \Pi$$

$$x = \frac{1}{b} \left[\frac{\Gamma^2(t-1)^a + 1}{y-1} + c - \Pi \right]$$

$$\frac{y-1}{x-1} + 1 = b$$

$$\frac{y-1}{x-1} = b-1$$

$$\frac{y-1}{b-1} = x-1$$

$$x = \frac{y-1}{b-1} + 1$$

$$\frac{\Gamma(ax+b) - c}{a+b} + 1 = \cot(r\theta)$$

$$\frac{\Gamma(ax+b) - c}{a+b} = \cot(r\theta) - 1$$

$$\Gamma(ax+b) - c = (\cot(r\theta) - 1)(a+b)$$

$$\Gamma(ax+b) = (\cot(r\theta) - 1)(a+b) + c$$

$$ax + b = \frac{1}{\Gamma} \left[(\cot(r\theta) - 1)(a+b) + c \right]$$

$$ax = \frac{1}{\Gamma} \left[(\cot(r\theta) - 1)(a+b) + c \right] - b$$

$$x = \frac{1}{a} \left(\frac{1}{\Gamma} \left[(\cot(r\theta) - 1)(a+b) + c \right] - b \right)$$

$$1 + \frac{1}{4(x^2 - 1)} = \sin(\theta t + \phi)$$

$$\frac{1}{4(x^2 - 1)} = \sin(\theta t + \phi) - 1$$

$$\frac{1}{4(\sin(\theta t + \phi) - 1)} = x^2 - 1$$

$$x^2 = \frac{1}{4(\sin(\theta t + \phi) - 1)} + 1$$

$$x = \sqrt{\frac{1}{4(\sin(\theta t + \phi) - 1)} + 1}$$