

Instructor: Frank Secretain
Course: math 101
Assessment: Test 2
Time allowed: 110 minutes
Devices allowed: Pencil, pen, eraser, calculator
Notes from instructor: Be neat. Show your work where needed. Box final answers.

Marks allocated: 5 questions worth 25 marks
Percentage of final grade: 25% of final grade

Formula Sheet

Order of Operations

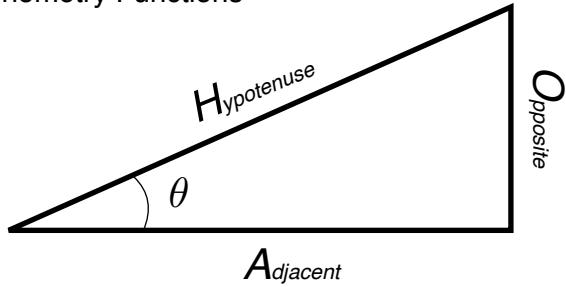
$$ac + bc = c(a + b)$$

exponents

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$


$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

radicals

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Trigonometry Functions

$$\sin(\theta) = \frac{O}{H} \quad \sin^{-1}\left(\frac{O}{H}\right) = \theta$$

$$\cos(\theta) = \frac{A}{H} \quad \cos^{-1}\left(\frac{A}{H}\right) = \theta$$

$$\tan(\theta) = \frac{O}{A} \quad \tan^{-1}\left(\frac{O}{A}\right) = \theta$$

Pythagoras Theorem

$$H^2 = O^2 + A^2$$

Relative Velocity

$$\vec{v}_{\frac{A}{C}} = \vec{v}_{\frac{A}{B}} + \vec{v}_{\frac{B}{C}}$$

Linear equations (Cramer's rule)

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Forms of a 1st order polynomial

$$y = ax + b$$

Forms of a 2nd order polynomial

$$y = ax^2 + bx + c$$

$$y = a(x - h)^2 + k$$

$$y = (x - m)(x - n)$$

Unit Conversions

angles

$$2\pi = 6.28 \text{ rad} = 360^\circ$$

mass

$$1 \text{ kg} = 2.2 \text{ lbs.}$$

lengths

$$1 \text{ mile} = 1.6 \text{ km}$$

$$1 \text{ inch} = 2.54 \text{ cm}$$

$$1 \text{ m} = 3.3 \text{ ft}$$

volumes

$$1 \text{ gallon} = 3.78 \text{ Litres}$$

(8 marks) Solve for x in the following equations:

$$\frac{a(x-2)^2}{(b-2)^2} + \cos(\theta) - \Gamma = 2$$

$$a \frac{x - x_o}{y - y_o} + b = 2x$$

$$\frac{\gamma x - \beta}{x-2} + 3\alpha = \eta + \epsilon$$

$$a=\frac{3(a-x(b+2))}{x-1}+1$$

(5 marks) Solve the system of linear equations for x and y:

$$\begin{aligned}3x + 2y &= 1 \\2x - y &= 2\end{aligned}$$

(5 marks) Solve the system of linear equations for x and y:

$$1 + \frac{2(x + 3(y - 3)) + 2}{y - 3} = 2$$

$$3(x + 1) - 1 = 2y$$

(5 marks) A woman owns 38 pets. Each of her pets is either a cat or a bird. If the pets have a total of 118 legs, how many cats and how many birds does the woman own?

(5 marks) A store sells two different types of coffee beans; the more expensive one sells for \$8 per pound, and the cheaper one sells for \$4 per pound. The beans are mixed to provide a mixture that sells for \$6.40 per pound. What is the ratio of the expensive to cheap coffee beans?

(8 marks) Solve for x in the following equations:

$$\frac{a(x-2)^2}{(b-2)^2} + \cos(\theta) - \Gamma = 2$$

$$\frac{a(x-2)^2}{(b-2)^2} = 2 + \Gamma - \cos(\theta)$$

$$(x-2)^2 = \frac{(2 + \Gamma - \cos(\theta))(b-2)^2}{a}$$

$$x = \sqrt{\frac{(2 + \Gamma - \cos(\theta))(b-2)^2}{a}} + 2$$

$$a \frac{x - x_o}{y - y_o} + b = 2x$$

$$a(x - x_o) + b(y - y_o) = 2x(y - y_o)$$

$$ax - ax_o + b(y - y_o) = 2x(y - y_o)$$

$$ax - 2x(y - y_o) = ax_o - b(y - y_o)$$

$$x(a - 2(y - y_o)) = ax_o - b(y - y_o)$$

$$x = \frac{ax_o - b(y - y_o)}{a - 2(y - y_o)}$$

$$\frac{\gamma x - \beta}{x - 2} + 3\alpha = \eta + \epsilon$$

$$\gamma x - \beta + 3\alpha(x-2) = (\eta + \epsilon)(x-2)$$

$$\gamma x - \beta + 3\alpha x - 6\alpha = x(\eta + \epsilon) - 2(\eta + \epsilon)$$

$$\gamma x + 3\alpha x - x(\eta + \epsilon) = \beta + 6\alpha - 2(\eta + \epsilon)$$

$$x(\gamma + 3\alpha - (\eta + \epsilon)) = \beta + 6\alpha - 2(\eta + \epsilon)$$

$$x = \frac{\beta + 6\alpha - 2(\eta + \epsilon)}{\gamma + 3\alpha - (\eta + \epsilon)}$$

$$a = \frac{3(a - x(b+2))}{x-1} + 1$$

$$(x-1)a = 3(a - x(b+2)) + (x-1)$$

$$ax - a = 3a - 3x(b+2) + x - 1$$

$$ax - a = 3a - 3xb - 6x + x - 1$$

$$ax + 3bx + 5x = a + 3a - 1$$

$$x(a + 3b + 5) = 4a - 1$$

$$x = \frac{4a - 1}{a + 3b + 5}$$

(2 marks) Solve the system of linear equations for x and y:

$$\begin{aligned} 3x + 2y &= 1 & (1) \\ 2x - y &= 2 & (2) \end{aligned}$$

solve for y in (2)

$$2x = 2 + y$$

$$y = 2x - 2 \quad (2a)$$

sub (2a) into (1)

$$3x + 2[2x - 2] = 1$$

$$3x + 4x - 4 = 1$$

$$7x = 5$$

$$x = \frac{5}{7} = 0.7143 \quad (1a)$$

sub (1a) into (2a)

$$y = 2\left[\frac{5}{7}\right] - 2$$

$$= \frac{10}{7} - 2$$

$$= \frac{10}{7} - \frac{14}{7}$$

$$y = -\frac{4}{7} = -0.5714 \quad (2b)$$

(5 marks) Solve the system of linear equations for x and y:

$$1 + \frac{2(x + 3(y - 3)) + 2}{y - 3} = 2 \quad (1)$$

$$3(x + 1) - 1 = 2y \quad (2)$$

expand (1)

$$2(x + 3(y - 3)) + 2 = y - 3$$

$$2x + 6(y - 3) + 2 = y - 3$$

$$2x + 6y - 18 + 2 = y - 3$$

$$2x + 5y = 13 \quad (1a)$$

expand (2)

$$3x + 3 - 1 = 2y$$

$$3x - 2y = -2 \quad (2a)$$

solve for y in (2a)

$$y = \frac{3x + 2}{2} \quad (2b)$$

sub (2b) into (1a)

$$2x + 5\left[\frac{3x + 2}{2}\right] = 13$$

$$4x + 5(3x + 2) = 26$$

$$4x + 15x + 10 = 26$$

$$19x = 16$$

$$x = \frac{16}{19} = 0.8421 \quad (1b)$$

sub (1b) into (2a)

$$3\left[\frac{16}{19}\right] - 2y = -2$$

$$-2y = -\frac{86}{19}$$

$$y = \frac{43}{19} = 2.263 \quad (2c)$$

(5 marks) A woman owns 38 pets. Each of her pets is either a cat or a bird. If the pets have a total of 118 legs, how many cats and how many birds does the woman own?

let:

$c = \# \text{ of cats she owns.}$

$b = \# \text{ of birds she owns.}$

so:

$$c + b = 38 \quad (1)$$

$$4c + 2b = 118 \quad (2)$$

solve for c in (1):

$$c = 38 - b \quad (1a)$$

sub (1a) into (2):

$$4[38 - b] + 2b = 118$$

$$152 - 4b + 2b = 118$$

$$-2b = -34$$

$$\boxed{b = 17} \quad (2a)$$

sub (2a) into (1a):

$$c = 38 - [17]$$

$$\boxed{c = 21} \quad (1b)$$

(5 marks) A store sells two different types of coffee beans; the more expensive one sells for \$8 per pound, and the cheaper one sells for \$4 per pound. The beans are mixed to provide a mixture that sells for \$6.40 per pound. What is the ratio of the expensive to cheap coffee beans?

let: x = pounds of expensive beans.

y = pounds of cheap beans.

so

$$8x + 4y = 6.40 + \quad \begin{array}{l} \text{(where } + \text{ is the} \\ \text{total amount of} \\ \text{beans} \end{array}$$

$$x + y = +$$

let:

$$+ = \text{total amount bought} = 1 \quad \leftarrow \text{can be anything.}$$

so:

$$8x + 4y = 6.40 \quad (1)$$

$$x + y = 1 \quad (2)$$

sub (2) into (1)

$$8[1-y] + 4y = 6.40$$

$$8 - 8y + 4y = 6.40$$

$$-4y = -1.6$$

$$\boxed{y = 0.4} \quad (1a)$$

$$\boxed{x = 0.6}$$

so:

$$\text{ratio} = \frac{x}{y} = \frac{0.6}{0.4} = \frac{3}{2} = 1.5 = 150\%$$