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Frank Secretain

Math 20

Test 1

110 minutes

Pencil, pen, eraser, calculator

Be neat. Show your work where needed. Box final answers.

6 questions worth 30 marks
20% of final grade



Formula Sheet

Arithmetic Series Geometric Series Binomial Theorem

anp = a1+ (n— 1)k a, = apr™ 1 (z+y)" =

_ - - _ - i—1 - n! n—k, k
Sn—Zal—l—(z—l)k Sn—Zalr Z(n—k)!k!x Y
=1 =1 k=0
n 1—r"
_§(Q1+an) :all_r

Line equation Quadratic formula Definition of the derivative
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(2 marks each) Determine the 50th number in the sequence and the sum from the first number to the
50th number for each of the following series.

-25, -24, -23, -22, ...

1, 1.01, 1.0201, 1.030301, ...



(2 marks) If a ball falls from a table at h1=1m and always rebounds to 97% of the previous bounce.
How high will the ball bounce on the 50th rebound.

=




(2 marks) Take the derivative with respect to “x” of the following function using the definition of the
derivative.

y(r) =ax+0b



(2 marks each) Take the derivative with respect to “x” of the following functions.

y(z) = 22* + sin(x)

y(z) = 3x?sin(z)



y(z) = 32°sin(3z* + 1) + o

y(r) = LA
sin(3x? + 1) g




y(z) = (z — 1)%sin((z — 1)°)



(5 marks) Determine the tangent line at x=-1 for the following function. Plot the tangent line on the plot.

y(a) = V2~

equation of a line:

y(z) =azx +0b -3 2 -1 i 2 3




(5 marks) You are constructing a window in the shape of a semi-circle over a rectangle. If the distance
around the outside of the window is 10 meters, what dimensions will result in the window having the
largest possible area (i.e. a maximum). o
Note: Areaofacircle= 7T

Circumference of a circle = 27T




(2 marks each) Determine the 50th number in the sequence and the sum from the first number to the
50th number for each of the following series.

-25, -24, -23, -22, ...
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How high will the ball bounce on the 50th rebound.
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[, 0%, 0309, 0.41233, ...

(2 marks) If a ball falls from a table at hi=1m and always rebounds to 97% of the previous bounce.
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(2 marks) Take the derivative with respect to “x” of the following function using the definition of the
derivative.

y(z) =ax+0b
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(2 marks each) Take the derivative with respect to “x” of the following functions.

y(z) = 22* + sin(x)
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y(z) = 3x?sin(z)
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y(z) = 32%sin(3z* + 1) + o
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y(x) = (v = 1?sin((z —1)°)
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(5 marks) Determine the tangent line at x=-1 for the following function. Plot the tangent line on the plot.
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(5 marks) You are constructing a window in the shape of a semi-circle over a rectangle. If the distance

around the outside of the window is 10 meters, what dimensions will result in the window having the
largest possible area (i.e. a maximum).

Note: Area of acircle = 77 ?“2

Circumference of a circle = 2711
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