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Test 3

110 minutes

Pencil, pen, eraser, calculator

Be neat. Show your work where needed. Box final answers.
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Formula Sheet

Arithmetic Series Geometric Series Binomial Theorem
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Line equation Quadratic formula Definition of the derivative
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(2 marks each) Integrate the following:
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(5 marks) Determine the shaded area of the two functions given in the legend.
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(5 marks) Calculate the volume of the bounded area of the function given in the legend (shaded in blue)
revolved around the z-axis (as shown in the top left corner shaded in red).
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(2 marks each) Integrate the following:
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(5 marks) Determine the shaded area of the two functions given in the legend.
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(5 marks) Determine the shaded area of the two functions given in the legend.
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(5 marks) Calculate the volume of the bounded area of the function given in the legend (shaded in blue)
revolved around the z-axis (as shown in the top left corner shaded in red).
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(5 marks) Calculate the volume of the bounded area of the function given in the legend (shaded in blue)
revolved around the z-axis (as shown in the top left corner shaded in red).
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